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Six-membered nitrogen-containing heterocyclic compounds
are known to be prominent in medicinal chemistry (e.g., pyri-
dines,1–6 piperidines,7–9 and piperazines10–13) and this has encour-
aged researchers to develop new and efficient synthetic protocols
to such moieties. Other privileged heterocyclic structures are 2-
and 4-pyridones, which are typically found in different antibacte-
rial agents such as pilicides, curlicides 1, and ciprofloxacin
(2)14–19 (Fig. 1). In addition, the corresponding 4-aminopyridinium
salts have been shown to be important in a variety of biological
processes.20–23 Although there are a number of synthetic methods
to prepare 4-pyridones, that is, cyclization of triketones with
ammonia or an amine,24,25 or the reaction of amines with
diketenes,26,27 there is still a need for improvements, and in
particular, an efficient methodology amenable for parallel synthe-
sis of substituted 4-pyridones is desirable. The synthesis of
4-aminopyridinium salts has only been scarcely reported, and to
the best of our knowledge the only reported method involves
nucleophilic substitution between amines and 4-halopyridines.28

Comins et al. reported the formation of 2,3-dihydro-4-pyri-
dones by the addition of Grignard reagents to acyl-activated
pyridinium salts,29 a procedure that was later used to synthesize
2,3-disubstituted 4-pyridones by Kitagawa et al. in their efforts
to find an enoyl-ACP reductase FabI inhibitor.15,16 Inspired by these
reports, the synthesis of 2-substituted 4-pyridones from 4-benzyl-
oxy pyridine N-oxide starting with our recently developed meth-
odology for the regioselective synthesis of 2-substituted
pyridines seemed possible.4,5 However, to make the procedure
amenable to parallel synthesis the current method requiring a
two-step protocol involving a liquid–liquid extractive work-up
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needs to be improved. Hence, by using a solid-supported ion ex-
changer for the purification of the intermediate pyridine a more
practical one-pot procedure would be possible. Here we report
an efficient synthesis of substituted 4-pyridones in which simply
adding an amine during the benzyloxy cleavage step made possible
the synthesis of substituted 4-aminopyridinium salts.

Recently Dudley and co-worker reported an interesting synthe-
sis of 2-benzyloxy-1-methylpyridinium triflate from the corre-
sponding pyridine using methyl triflate as the N-alkylating
agent.30 The triflate salt was then used in combination with an
appropriate base as a benzylating reagent for alcohols. Hence, com-
bining this method with our one-pot pyridine synthesis resulted in
an attractive alternative for the synthesis of substituted 4-pyri-
dones 6 (Table 1).

In addition, by exchanging the nucleophile from hydroxide to
ammonia in the microwave-assisted debenzylation reaction, the
corresponding substituted 4-aminopyridinium salts 7 could be
obtained.

By varying the Grignard reagent in the first reaction and by
using two different debenzylation reactions, a small set of 2-substi-
tuted 4-pyridones 6 and 4-aminopyridinium salts 7 was prepared.
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Figure 1. Examples of two biologically active 2- and 4-pyridones, the antibacterial
curlicide 1, and the antibiotic ciprofloxacin (2), respectively.
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Table 1
Synthesis of 4-pyridones31
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Entry R R0 Yield (%) 4 Yielda (%) 6

1 H Ph 69 81
2 H 4-Cl-C6H4 73 74
3 H N-Me-indole 72 79
4 H 2-thienyl 69 82
5 Ph 4-OMe-C6H4 76 70

Reaction conditions: pyridine N-oxide (1 equiv) in THF, Grignard reagent (1.2 equiv) at rt, pH 6–8, Ac2O (10 equiv), 4 min at 120 �C.
a Isolated yield.
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Scheme 1. Synthesis of 4-aminopyridinium salts.32
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The 2-substituted pyridines 4 were purified simply by a catch and
release protocol using a solid-supported ion exchange resin and
they were used without further purification in the remaining steps.
These included N-methylation with methyl triflate to give the acti-
vated pyridinium salts 5 followed by a microwave-assisted deben-
zylation. The target compounds 6 and 7 were obtained in good
overall yields (Table 1 and Scheme 1).

Although 4-aminopyridinium salts 7 are easily accessible via
this new method, more diverse 4-aminopyridinium salts would
be obtained if amines other than ammonia could be used in the
debenzylation step. Indeed, by using either piperidine or morpho-
line, 4-aminopyridiniums 8 and 9 were synthesized in 50% and 60%
yields, respectively (Scheme 2).

In summary, we have developed a practical method for the syn-
thesis of a diverse set of substituted 4-pyridones as well as 4-amin-
opyridinium salts. Deprotection of the methyl pyridinium triflates
using NaOH in THF at room temperature generated substituted 4-
pyridones. Moreover, by exchanging NaOH for ammonia, or other
amines, followed by microwave heating, resulted in substituted
4-aminopyridinium salts. In addition, a new one-pot synthesis of
substituted pyridines was developed, which together with the
deprotection strategy described above, constitutes a platform for
library synthesis of substituted 4-pyridones and 4-aminopyridini-
um salts.
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pyridine 4a (0.18 g, 0.69 mmol) cooled in an ice-bath was added MeOTf (0.12 g,
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monitored by TLC (heptane/EtOAc 1:1, the reaction was complete in 30 min in
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with CH2Cl2 (10 mL) and washed with 2 M aqueous NaOH and brine
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the combined organic layers were dried over Na2SO4. The resulting 4-pyridone
was purified using column chromatography (EtOAc/EtOH 8:2) which gave 6a
as a clear oil (0.18 g, 81%).
IR (vmax/cm�1) 3062, 1798, 1565, 1515, 1438, 1267, 1154, 1092, 812, 762, 698.
1H NMR (400 MHz, CDCl3) d: 7.45–7.43 (m, 3H), 7.38 (d, J = 7.6 Hz, 1H), 7.23–
7.28 (m, 2H), 6.37 (dd, J = 7.6, 2.8 Hz, 1H), 6.30 (d, J = 2.8 Hz, 1H), 3.40, (s, 3H).
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32. General procedure for the synthesis of 4-aminopyridinium salts 7a,d,e,f,g,
exemplified with 7a. To pyridine 4a (0.17 g, 0.63 mmol) cooled in an ice-bath
was added MeOTf (0.11 g, 0.70 mmol) dropwise. The solution was allowed to
warm to rt and monitored by TLC (heptane/EtOAc 1:1, the reaction was
complete in 30 min in all cases) and upon completion the mixture was
concentrated. The residue was dissolved in ammonia-saturated THF solution
(5 mL) and heated under microwave irradiation at 100 �C for 3 min. The
mixture was concentrated under reduced pressure and the residue was
purified using column chromatography (EtOAc/EtOH 8:2) to give 7a as a white
solid (0.18 g, 83%).
IR (vmax/cm�1) 3051, 1672, 1455, 1310, 1299, 1176, 802, 798, 612.
1H NMR (400 MHz, CDCl3) d: 8.10 (d, J = 7.3 Hz, 1H) 7.61–7.54 (m, 3H) 7.53–
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LRMS calcd for [M+H]+ C13H13F3N2O3S 334.06, obsd 334.06.
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